Acid-Base Disorders

Myrna Y. Munar, Pharm.D., BCPS
Associate Professor
Background

- Primary alterations in pH may be metabolic or respiratory in origin
 - Metabolic: result from processes that alter pH by changing the plasma [HCO₃⁻]
 - Respiratory: result from primary changes in the arterial carbon dioxide tension (PaCO₂)
 - Degree of acidity is expressed as pH
 - pH is the negative log of the [H⁺]
 - pH & [H⁺] are inversely related
 - Acids donate H⁺; bases accept H⁺
Pathophysiology

• Endogenous metabolism of carbohydrates and fat results in the production of 15000 mmol of CO\textsubscript{2} per day
• CO\textsubscript{2} is not an acid, it combines with H\textsubscript{2}O as it is added to the bloodstream to form carbonic acid

\[CO_2 + H_2O \leftrightarrow H_2CO_3 \leftrightarrow H^+ + HCO_3^- \]

• Most of the excess H+ combines with intracellular buffers
• The HCO\textsubscript{3} generated by the rxn leaves the cell and enters the ECF
• Therefore, generated CO\textsubscript{2} is primarily carried in the bloodstream as HCO\textsubscript{3} with little change in extracellular pH
 – Able to measure serum HCO\textsubscript{3}
Pathophysiology

- The reverse occurs in the alveoli (lungs)
- When hemoglobin (RBC) is oxygenated, H\(^+\) is released
- H\(^+\) combines with HCO\(_3\) to form carbonic acid, and then CO\(_2\) which is then exhaled
 \[H^+ + HCO_3^- \leftrightarrow H_2CO_3 \leftrightarrow CO_2 + H_2O \]

- Carbonic acid concentration is directly proportional to PCO\(_2\)
 - Able to measure PCO\(_2\) on ABG
 - Ref: BD Rose Clinical Physiology of Acid-Base and Electrolyte Disorders
Acid-Base Balance

• 3 mechanisms maintain acid-base balance:
 – Extracellular buffering
 • 1st & fastest defense against an increase in [H⁺]
 – Ventilatory regulation of CO₂ elimination
 – Renal regulation of H⁺ & HCO₃⁻ excretion

• Buffering system (3 components):
 – Bicarbonate (most important)/carbonic acid
 – Phosphates
 – Proteins
Buffering

• Principal acid-base pair: carbonic acid/bicarbonate
 – Carbonic acid: respiratory component of the buffer pair because its concentration is directly proportional to PCO₂, determined by ventilation
 – Bicarbonate: metabolic component because the kidney may alter [HCO₃⁻] by reabsorption, elimination, or generation of new HCO₃⁻
Buffering

• Phosphate buffering system consists of:
 – Serum inorganic phosphate
 – Intracellular organic phosphate
 • Intracellular >> extracellular so phosphate is primarily intracellular buffer
 – Calcium & phosphate in bone
 • Prolonged metabolic acidosis will cause buffering from bone
Buffering

• Intra- & extracellular proteins
 – Charged side chains of amino acids provide buffering action
 – Intracellular >> extracellular, therefore proteins are mainly intracellular buffers
Respiratory Regulation

• Medullary chemoreceptors sense changes in PCO$_2$ or pH & alter ventilation (rate & depth)
Renal Regulation

• Final & slowest mechanism by which the body maintains acid-base balance
 – Renal excretion of acid
 – Reabsorption of filtered HCO$_3^-$
 • 4000 mEq of HCO$_3^-$ filtered daily
 • Almost all reabsorbed in proximal tubule
 – Generation of new HCO$_3^-$
Proximal Tubule

- Tubular lumen:
- Secreted H^+ ions combine with filtered HCO_3^- to form carbonic acid
- H_2CO_3 dissociates into $CO_2 + H_2O$
 - Facilitated by luminal CA
 - $CO_2 + H_2O$ passively reabsorbed
Proximal Tubule

- Intracellular H$_2$O breaks down into H$^+$ and OH$^-$
- OH$^-$ combines with CO$_2$ to form HCO$_3^-$
 - Catalyzed by CA
- HCO$_3^-$ is returned to the circulation via Na$^+$-3HCO$_3^-$ cotransporter
Regulation of Acid

- H\(^+\) can combine with:
 - Bicarb to form carbonic acid
 - Phosphate to form titratable acid
 - Ammonia to form ammonium
 - Excreted in urine

\[\text{Tubular Lumen} \]
\[\begin{align*}
 \text{Tubular Cell} & : \\
 \text{HCO}_3^- & \quad \text{HPO}_4^{4-} & \quad \text{NH}_3 \\
 \text{H}_2\text{CO}_3 & \quad \text{H}_2\text{PO}_4^- & \quad \text{NH}_4^+ \\
\end{align*} \]
Clinical Assessment of Acid-Base Status

- Arterial blood gases (ABG)
- Serum electrolytes
- Physical exam
- Medical hx
- Medication hx
- Clinical condition of pt
ABG

• Blood gases are measured to determine the patient’s oxygenation & acid-base status
 – Arterial, designated PaO$_2$, PaCO$_2$
 • Arterial blood provides added information about how well the lungs are oxygenating blood
 – Mixed venous, designated PvO$_2$, PvCO$_2$
 • Used when arterial blood cannot be obtained
 • Venous blood from an extremity can be misleading
 – Metabolism in the extremity (thus affecting PvO$_2$, PvCO$_2$) can be altered by hypoperfusion, exercise, infection.
Blood Gases

<table>
<thead>
<tr>
<th></th>
<th>pH</th>
<th>PCO(_2) mmHg</th>
<th>[HCO(_3)] mEq/L</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arterial</td>
<td>7.37 – 7.43</td>
<td>36 – 44</td>
<td>22 – 26</td>
</tr>
<tr>
<td>Venous</td>
<td>7.32 – 7.38</td>
<td>42 – 50</td>
<td>23 – 27</td>
</tr>
</tbody>
</table>
Metabolic or Respiratory Acidosis or Alkalosis

<table>
<thead>
<tr>
<th>Disorder</th>
<th>pH</th>
<th>H⁺</th>
<th>Primary Disturbance</th>
<th>Compensatory Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metabolic acidosis</td>
<td>Dec</td>
<td>Inc</td>
<td>Dec [HCO₃⁻]</td>
<td>Dec PaCO₂</td>
</tr>
<tr>
<td>Metabolic alkalosis</td>
<td>Inc</td>
<td>Dec</td>
<td>Inc [HCO₃⁻]</td>
<td>Inc PaCO₂</td>
</tr>
<tr>
<td>Respiratory acidosis</td>
<td>Dec</td>
<td>Inc</td>
<td>Inc PaCO₂</td>
<td>Inc [HCO₃⁻]</td>
</tr>
<tr>
<td>Respiratory alkalosis</td>
<td>Inc</td>
<td>Dec</td>
<td>Dec PaCO₂</td>
<td>Dec [HCO₃⁻]</td>
</tr>
</tbody>
</table>
Respiratory Acid-Base Disorders
Pathophysiology

• The reverse occurs in the alveoli (lungs)
• When hemoglobin (RBC) is oxygenated, H^+ is released
• H^+ combines with HCO_3^- to form carbonic acid, and then CO_2 which is then exhaled

\[H^+ + HCO_3^- \leftrightarrow H_2CO_3 \leftrightarrow CO_2 + H_2O \]

• Carbonic acid concentration is directly proportional to PCO_2
 - Able to measure PCO_2 on ABG
 - Ref: BD Rose Clinical Physiology of Acid-Base and Electrolyte Disorders
Respiratory Acid-Base Disorders

- Generated by a primary alteration in CO₂ elimination which changes the concentration of CO₂ and therefore the carbonic acid concentration in the blood
 - A primary reduction in PaCO₂ causes a rise in pH (respiratory alkalosis)
 - A primary increase in PaCO₂ causes a fall in pH (respiratory acidosis)

\[
H^+ + HCO_3^- \leftrightarrow H_2CO_3 \leftrightarrow CO_2 + H_2O
\]
Respiratory Acidosis

- Primary retention of CO$_2$ that lowers pH
- Failure of lungs to eliminate CO$_2$
 - Ventilation-perfusion abnormality/inequality
 - Cardiopulmonary
 - Disorder that restricts ventilation
 - Airway obstruction
 - Neuromuscular
 - Disorders of peripheral nerves or skeletal muscle required for ventilation
Causes

- Perfusion abnormalities
 - Cardiac arrest
 - Massive PE
- Airway & perfusion
 - Severe pulmonary edema
 - Severe pneumonia
 - Severe bronchospasm
 - ARDS
 - Obstruction (foreign body, laryngeal edema)
- Neuromuscular
 - Trauma, stroke
 - Narcotic or sedative OD
 - Brainstem or cervical cord injury
 - Guillain-Barre syndrome
 - Myasthenia gravis
- Ventilator malfxn (rare)
- TPN
 - Carbohydrates -> increased CO₂ production
Clinical Sx

• Neurologic
 – MS changes
 – Sz
 – Stupor
 – Coma

• Cardiac contractility & HR
 – Depends on severity of acidosis
Compensation

- Acute respiratory acidosis
 - Nonbicarbonate buffers (proteins, phosphate, hemoglobin) take up the H⁺ from the carbonic acid formed as a result of the increase in PaCO₂
 - Allows [HCO₃⁻] to increase
 - The [HCO₃⁻] will increase by 1 mEq/L above 24 mEq/L for each 10 mmHg increase in PaCO₂

\[
H^+ + HCO_3^- \leftrightarrow H_2CO_3 \leftrightarrow CO_2 + H_2O
\]
Compensation

• Chronic respiratory acidosis (beyond 12 - 24 h)
 – In addition to nonbicarbonate buffers, renal excretion of H^+ and generation of new HCO_3^- increases raising pH towards normal
 – Renal compensation results in the plasma $[\text{HCO}_3^-]$ increasing by 3.5 - 4 mEq/L above 24 mEq/L for each 10 mmHg increase in PaCO$_2$ above 40 mmHg.
Management of Acute Respiratory Acidosis

• Establish a patent airway to reverse life-threatening hypoxia (PaO₂ < 40 mmHg) & to prevent brain damage

• If condition is severe, pt should be intubated & mechanically ventilated. Criteria:
 – Inability to maintain a normal PaCO₂ or a PaO₂ of at least 60 mmHg while receiving 60% inhaled O₂ (FiO₂ = 0.60)
 – Excessive work of breathing or flail chest
 – Metabolic acidemia for which breathing cannot compensate
Bicarb

- Careful in administering bicarb!
 - May aggravate acidosis
 - Bicarb increases venous CO\textsubscript{2} production 2\textdegree to conversion of HCO\textsubscript{3} to CO\textsubscript{2}; CO\textsubscript{2} cannot be effectively removed/exchanged by the lungs
 - In acute respiratory acidosis the drive to breath is hypercarbia (increased PaCO\textsubscript{2})
 - Rapid correction with bicarb may decrease respiratory drive
 - Large doses of bicarb can precipitate a metabolic alkalosis
Chronic Respiratory Acidosis

• Increase in PaCO_2 & hypoxemia but to a lesser degree than acute
 – No noticeable neurologic defects

• Causes
 – Neuromuscular abnormalities: brainstem infarct, MS, obesity-hypoventilation
 – Pulmonary abnormalities: COPD, interstitial pulmonary disease
Oxygen

- Maintain patent airway & adequate oxygenation
- Careful with oxygen!
 - Because of compensation, these pts can tolerate an elevated PaCO_2 & a low PaO_2
 - Drive to breathe is dependent on hypoxemia
 - Administration of O_2 therapy can eliminate the drive to breathe & result in carbon dioxide narcosis
Oxygen

• If $\text{PaCO}_2 \geq 50 \text{ mmHg}$, no O_2 therapy needed

• If $\text{PaCO}_2 < 50 \text{ mmHg}$, O_2 therapy should be initiated cautiously
 – If PaCO_2 increases on O_2 therapy, may be a sign of impending CO_2 narcosis. D/C O_2
Bicarb

• Use when:
 – pH < 7.2 & PaCO₂ remains elevated +/- pt has sx of acidosis (neurologic, cardiac)
 – Amount of bicarb should increase the pH to no more than 7.25
 • Risk of arrhythmia when pH < 7.2
 • Recall, bicarb can worsen acidosis: bicarb increases venous CO₂ production 2° to conversion of HCO₃⁻ to CO₂; CO₂ cannot be effectively removed/exchanged by the lungs
Respiratory Alkalosis

• The PaCO2 falls if the elimination of CO2 by the lungs exceeds the production of CO2
 – CO₂ is generated by diet and tissue metabolism
• Ventilation >>CO₂ production
Causes

• Central stimulation of respiration
 – Pregnancy
 – Salicylates; catecholamines; theophylline; nicotine; progesterone
 – Anxiety
 – Pain
 – Fever
 – CVA; brain tumors; head trauma
Causes

• Peripheral stimulation of respiration
 – CHF
 – PE
 – *Altitude*
 – Asthma
 – Pneumonia
 – Hypotxn

• Mechanical or voluntary hyperventilation
Compensation

• Acute respiratory alkalosis
 – H⁺ are released from body’s buffers (intracellular proteins, phosphates, hemoglobin) to titrate bicarb
 – The \([\text{HCO}_3^-]\) is decreased by a maximum of no more than 3.0 mEq/L for each 10 mmHg decrease in \(\text{PaCO}_2\)
 – Other guidelines say 2 mEq/L decrease in \([\text{HCO}_3^-]\)
Compensation

• Chronic respiratory alkalosis (> 6 hours)
 – Kidneys increase bicarb excretion
 • Decrease in reabsorption of filtered bicarb
 • +/- reduction in the generation of new bicarb
 – The $[\text{HCO}_3^-]$ is reduced by 4 mEq/L below 24 mEq/L for each 10 mmHg drop in PaCO_2
Management

• Acute respiratory alkalosis
 – ID & correct underlying cause
 – Pts with severe hypoxemia – O₂ therapy
 – Life-threatening alkalosis (pH > 7.6) → mechanical ventilation

• Chronic respiratory alkalosis
 – Pts usually asymptomatic; txmt not often required
 – Rebreathing device (paper bag – for pts with anxiety)
Metabolic Acid-Base Disorders
Metabolic Acidosis - Pathophysiology

• Bicarb is lost
 – From buffering of an organic acid that is added to the ECF
 • Lactic acid (septic shock), ketoacids (DKA, EtOH)
 – Loss of bicarb-rich fluids
 • Diarrhea

• Nonvolatile acid is gained
 – Progressive accumulation of endogenous acids 2° to renal impairment
 • Phosphates, sulfates
 – Presence of anions
Metabolic Acidosis

• Anion gap

• Non anion gap
Anion Gap Derivation

- The anions in the blood include:
 - \(\text{HCO}_3^-, \text{Cl}, \text{PO}_4^-, \text{SO}_4^-, \text{albumin}, \text{organic acids} \)
- The cations in the blood include:
 - \(\text{Na}, \text{K}, \text{Ca}, \& \text{Mg} \)
- Because plasma remains neutral, the true \textit{AG is zero} or
 \[
 (\text{Na} + \text{K} + \text{Ca} + \text{Mg}) - (\text{HCO}_3^- + \text{Cl} + \text{PO}_4^- + \text{SO}_4^- + \text{albumin} + \text{organic acids}) = 0
 \]
Anion Gap Derivation

- The AG accounts for anions (SO$_4$, organic acids) that are always present, but not always measured in routine labs:
- Which labs are on the Chem 7?
Anion Gap Derivation

- \(AG = (\text{serum Na} + \text{serum K}) - (\text{serum Cl} + \text{serum HCO}_3) \)
- Since K is relatively low, the formula can be abbreviated to:
- \(AG = \text{serum Na} - \text{serum Cl} - \text{serum HCO}_3 \)
Which values should we use?

• In the past,
 – Normal AG was 12 ± 4 mEq/L

• Changes in the lab technique for measuring Cl have lowered the AG to 10 ± 4 mEq/L
 • Semin Nephrol 1998;18(1):83-97

• What does an elevated AG mean?
M-U-D-P-I-L-E-S

- M: methanol: formic acid, lactic acid; massive rhabdomyolysis
- U: uremia
- D: DKA: B-hydroxybutyrate
- P: paraldehyde: organic acids; phosphate
- I: ingestions (many plus toluene: hippurate; formaldehyde: formic); iron
- L: lactic acidosis: lactate, D-lactate
- E: ethylene glycol: glycolate, oxalate; EtOH
- S: salicylate: ketones, lactate, salicylate; sulfate; starvation; strychnine
Osmolality

CalculatedOsm = 2 × Na + \frac{\text{glucose (mg/dl)}}{18} + \frac{\text{urea (mg/dl)}}{2.8}
Osmolality

• Solutes other than Na, glucose, & urea can contribute to serum osmolality under abnormal conditions

• Examples:
 – ethanol, mannitol, glycerol, contrast dye, ethylene glycol, and methanol
 – all are effective osmoles
Osmolal Gap

• Equals measured osmolality minus calculated osmolality
• Difference > 10 mOsm/L considered abnormal; suggests presence of exogenous substance or osmole
• Na, glucose, urea do not increase osmolar gap because these affect both measured & calculated osmolality
Relationship between AG & Osm Gap

<table>
<thead>
<tr>
<th></th>
<th>AG</th>
<th>Osm Gap</th>
<th>Double Gap</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethylene Glycol</td>
<td>+</td>
<td>+</td>
<td>Yes</td>
</tr>
<tr>
<td>Methanol</td>
<td>+</td>
<td>+</td>
<td>Yes</td>
</tr>
<tr>
<td>Renal Failure</td>
<td>+</td>
<td>+</td>
<td>Yes</td>
</tr>
<tr>
<td>Isopropyl Alcohol</td>
<td>-</td>
<td>+</td>
<td>No</td>
</tr>
<tr>
<td>Ethanol</td>
<td>-</td>
<td>+</td>
<td>No</td>
</tr>
</tbody>
</table>
Effect of Serum Albumin on AG Calculation

• Albumin is an unmeasured anion
• In hypoalbuminemia, you have decreased number/amount of unmeasured anions, thereby “falsely” lowering the AG.
• There is an approximate 2.5 mEq/L fall in the AG for every 1 g/dl reduction in serum albumin concentration.

• Add 2.5 mEq/L onto the AG per 1 g/dl fall in serum albumin
Example

• Na 136, K 3.5, Cl 106, HCO$_3$ 20
• What is the AG?

• The pt has a serum albumin of 2.8 g/dl
 – Normal: 3.8-5.2 g/dl

• Does the pt have an AG?
Please enter your answer

- Na 136, K 3.5, Cl 106, HCO₃ 20
- Calculate AG.
- AG = (Na + K) – (Cl + HCO₃)
- AG = ???.?
Please enter your answer

• The pt has a serum albumin of 2.8 g/dl
 – Normal serum albumin: 3.8 – 5.2 g/dl

• **Recall, add 2.5 mEq/L onto the AG per 1 g/dl fall in serum albumin** Calculate AG.

• \(AG = (Na + K) - (Cl + HCO_3) + 2.5 \)

• \(AG = ???.? \)
Yes or No

- Does the patient have an AG metabolic acidosis?
M-U-D-P-I-L-E-S

- **M**: methanol: formic acid, lactic acid; massive rhabdomyolysis
- **U**: uremia
- **D**: DKA: B-hydroxybutyrate
- **P**: paraldehyde: organic acids; phosphate
- **I**: ingestions (many plus toluene: hippurate; formaldehyde: formate); iron
- **L**: lactic acidosis: lactate, D-lactate
- **E**: ethylene glycol: glycolate, oxalate; EtOH
- **S**: salicylate: ketones, lactate, salicylate; sulfate; starvation; strychnine
Lactic Acidosis

- Lactate is the end product of anaerobic metabolism of glucose (glycolysis)
- $[\text{Lactate}] \geq 4.0-5.0$ mEq/L with a simultaneous decrease in HCO_3 & arterial pH are highly suggestive of lactic acidosis
 - Each 1 mEq/L increase in plasma [lactate] will cause an equivalent decrease in serum HCO_3.
Lactate Metabolism

- Lactic acid, derived from pyruvate, enters the circulation in small amounts & removed by liver
- In liver, lactate is reoxidized to pyruvate* (requires NAD) which is then metabolized to CO$_2$ & H$_2$O
L/P Ratio

• Normally, blood [lactate] is 10x [pyruvate]
 – If pyruvate is elevated (by increased glucose intake) lactate increases and L/P ratio is unchanged
 – If anaerobic glycolysis increases (tissue hypoxia) and sufficient NAD is NOT available to reconvert lactate to pyruvate, then lactate will increase >> pyruvate and L/P ratio will increase
 – Lactate:pyruvate > 10:1 indicates hypoxic lactic acidosis
Causes

• Tissue hypoxia
 – Shock (cardiovascular, septic, hypovolemic)
 – Severe anemia
 – CHF
 – Asphyxia
 – Carbon monoxide poisoning
Causes

• Deranged oxidative metabolism
 – DM
 – Liver failure
 – Medications (ASA, Fe, INH, metformin)
 – Methanol, EtOH, ethylene glycol
Management

• ID & tx underlying cause
 – In most pts, cause of lactic acidosis is cardiac arrest, shock, or sepsis where impaired O$_2$ delivery to tissues is the primary cause of lactic acid accumulation.
 – Bicarb does not affect underlying tissue hypoxia
Bicarb

• Use of bicarb is controversial
 – Administration of bicarb also increases venous [CO2]. CO2 permeates by passive diffusion into cells and decreases intracellular pH of many tissues: myocardium, liver, CNS (intracellular acidosis). “Paradoxical acidosis”
 • Hepatic cells -> decreased lactic utilization
 • Cardiac myocytes -> decreased contractility
Bicarb

• Risks of bicarb: hypernatremia, volume overload, overshoot to metabolic alkalosis

• Bicarb is used for severe metabolic acidosis
Alternatives to Bicarb

- Tromethamine (THAM)
- Dichloroacetate (investigational)
Tromethamine

- Synthetic alkali that increases the formation of HCO_3^- from carbonic acid to prevent or correct acidosis
- Does not contain Na
- Given IV, but highly alkaline
 - If it infiltrates:
 - Tissue damage (necrosis, sloughing, pain, phlebitis, thrombosis); severe inflammation; vascular spasm
- ADRs: hyperkalemia, hypoglycemia, hypocalcemia; impaired coagulation, respiratory depression
- Do not use in severe renal or liver failure
Dichloroacetate

- Investigational; but mentioned in textbook
- Stimulates oxidation of lactate to acetyl CoA and CO₂
- Has not been found to increase survival in pts with lactic acidosis
- ADRs: metabolized to oxalate -> can crystallize and cause end organ damage (most likely kidneys); neurotoxicity: may deplete thiamine stores, co-administer w/thiamine
Non AG Metabolic Acidosis

- Sometimes referred to as hyperchloremic metabolic acidosis. Causes:
 - GI loss of HCO3
 - Diarrhea
 - Renal loss of HCO3
 - Type 2 RTA
 - Renal dysfxn
 - Type I or type IV RTA;
 - Renal failure
 - Ingestions
 - Ammonium chloride
How to Distinguish Renal Causes from GI Causes

- Urine anion gap. Normal is zero
 - Urine anion gap = ([Na]_u + [K]_u) − [Cl]_u

- GI cause (diarrhea)
 - In response to acidemia, kidneys rev up by increasing urinary acid excretion, mainly as ammonium
 - Urine [Cl] is high because Cl maintains neutrality with ammonium
How to Distinguish Renal Causes from GI Causes

- Urine anion gap = ([Na]_u + [K]_u) – [Cl]_u

- When [ammonium] is high, [Cl] is high and the urine AG will be (-)

- Renal causes (RTA)
 - Impaired to low levels of ammonium, thus low levels of chloride and the urine AG will be (+)

- Get your clicker ready
If the urine AG is

A) a negative value, then the likely cause of the non AG metabolic acidosis is gastrointestinal, such as diarrhea

B) a positive value, then the likely cause of the non AG metabolic acidosis is renal, such as renal failure or a renal tubular acidosis

C) All of the above
Renal Tubular Acidoses (RTA)

- Falls into the category of non AG metabolic acidosis
- 3 types:
 - *Proximal*, type II RTA
 - *Distal*, type I RTA
 - *Hyperkalemia, hypoaldosterone or aldosterone resistant*, type IV
Acid-Base Balance in Kidneys

- Proximal reclamation of bicarb
- Synthesis of ammonia
- Distal secretion of H^+
Type II Proximal RTA

• Defect: decreased proximal HCO_3^- reabsorption

• Proximal tubule is responsible for reclamation of HCO_3^-

• Self-limiting disorder:
 – The threshold for HCO_3^- reabsorption is lowered to around 15 – 17 mEq/L
 • Normal serum HCO_3^- is 23-29 mEq/L
Type II Proximal RTA

• When serum $[\text{HCO}_3^-]$ falls $< 15-17$ mEq/L,
 – HCO_3^- is reabsorbed/reclaimed
 – HCO_3^- excretion decreases
 – Urinary pH decreases

• Serum $[\text{HCO}_3^-]$ is usually 14-20 mEq/L in these pts
Type II Proximal RTA

- *Conversely*, above the threshold, HCO₃ is excreted in the urine
- In normal pts, HCO₃ is not excreted in the urine until serum HCO₃ is > 26 mEq/L
- Shifted to a lower level in pts with type II RTA

15 mEq/L HCO₃ 17 mEq/L

Reabsorption **Excretion**
Type II Proximal RTA

• A new steady-state \([\text{HCO}_3^-]\) is achieved
• Results in a mild metabolic acidosis
• Drugs & toxins that cause type II RTA:
 – acetazolamide (CA inhibitor)
 – ifosfamide
 – streptozotocin
 – outdated TCN
 – lead, cadmium, mercury
Proximal Tubule

- Intracellular H$_2$O breaks down into H$^+$ and OH$^-$
- OH$^-$ combines with CO$_2$ to form HCO$_3^-$
 - Catalyzed by CA
- HCO$_3^-$ is returned to the circulation via Na$^+$-3HCO$_3^-$ cotransporter
Acetazolamide

- Carbonic anhydrase (CA) inhibitor
- Tubular cell:
 - Inhibits CA
 - Prevents the production of HCO_3^- & H^+ from CO_2 & H_2O
 - Therefore, less H^+ is available for Na/H exchange
 - Less HCO_3^- is available for exit across basolateral membrane
Distal Tubule

• Responsible for the excretion of a daily fixed load

• Daily metabolism produces acid as H^+ as:
 – non volatile sulphuric acid
 – aminoacid catabolism
 – non-metabolized organic acids
 – remainder: phosphoric & other acids
Distal Tubule

- Distal tubule lacks luminal CA; but CA is in tubule cell
- Secreted H⁺ can generate a H⁺ gradient of 1000:1 (lumen:cell)
- For each secreted H⁺, a new HCO₃⁻ is transferred to the circulation
Regulation of Acid

- H^+ can combine with:
 - Bicarb to form carbonic acid
 - Phosphate to form titratable acid
 - Ammonia to form ammonium
 - Excreted in urine

![Diagram showing the regulation of acid with bicarbonate (HCO$_3^-$), phosphate (HPO$_4^{2-}$), ammonia (NH$_3$), carbonic acid (H$_2$CO$_3$), phosphate (H$_2$PO$_4^-$), and ammonium (NH$_4^+$).]
Type I Distal RTA

• A defect at any point may result in a defect in distal urinary acidification:
 – carbonic anhydrase inhibitor (acetazolamide)
 – need adequate pumps (H⁺-ATPase pump) to secrete H⁺
 – cell membrane must prevent H⁺ backleak
Type I Distal RTA

- Unfavorable electrical gradient for H⁺ secretion (voltage defect)
 - Na is reabsorbed at a faster rate than Cl
 - negative intraluminal potential
 - favors secretion of H⁺ and K
 - Amiloride or triamterene (and other drugs)-> inhibit Na reabsorption -> causes a voltage-dependent RTA (->inhibition of H⁺secretion)
Type I Distal RTA

- Decrease in H\(^+\) secretion
- Ability to lower urine pH (make more acidic) is impaired
- Pts cannot lower their urine pH below 5.5, even in the presence of severe metabolic acidosis
 - urine pH can normally be lowered to 4.5-5.0
Type I Distal RTA

• Defect in acidification diminishes ammonium & titratable acid excretion
 – prevents excretion of the dietary acid load

• Continued H^+ retention
 – leads to a reduction in plasma HCO3 which may fall to < 10 mEq/L
Causes - Drugs & Toxins

• Amphotericin B
 – selective increase in membrane permeability
 – back diffusion of H^+ into tubular cells

• Amiloride, triamterene, lithium, CSA
 – curtails Na reabsorption
 • diminishes or abolishes the electrical potential leading to decrease H^+ & K excretion
 • linked to hyperkalemia

• Ifosfamide - direct tubular toxin
Type IV RTA

• Metabolic acidosis resulting from aldosterone deficiency or resistance
• Associated with diabetic nephropathy & interstitial nephritis
• Possible drug-induced causes:
 – spironolactone
 – ACE inhibitors
Distal Tubule

<table>
<thead>
<tr>
<th>Tubular Cell</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 K</td>
</tr>
<tr>
<td>Na-K ATPase</td>
</tr>
<tr>
<td>3 Na</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tubular Lumen</th>
</tr>
</thead>
<tbody>
<tr>
<td>K</td>
</tr>
<tr>
<td>Na⁺</td>
</tr>
<tr>
<td>Cl⁻</td>
</tr>
</tbody>
</table>

\[
\text{H}_2\text{O} + \text{CO}_2 \rightarrow \text{H}_2\text{CO}_3 \\
\text{H}_2\text{CO}_3 \rightarrow \text{HCO}_3^- + \text{H}^+ \\
\text{Glutamine} \rightarrow \text{Glutamate} \\
\text{Aldo} \rightarrow \text{NH}_3 \\
\]

\[
\text{CA} \\
\text{Aldo} \\
\text{Aldo} \\
\]

\[
\text{NH}_3 \\
\text{Aldo} \\
\text{Aldo} \\
\]

\[
\text{Glutamine} \\
\text{Aldo} \\
\text{Aldo} \\
\]

\[
\text{H}_2\text{O} + \text{CO}_2 \\
\text{H}_2\text{CO}_3 \\
\text{HCO}_3^- + \text{H}^+ \\
\text{Glutamine} \\
\text{Aldo} \\
\text{Aldo} \\
\]

\[
\text{Glutamate} \\
\text{NH}_3 \\
\text{Aldo} \\
\text{Aldo} \\
\]

\[
\text{CA} \\
\text{CA} \\
\text{Aldo} \\
\text{Aldo} \\
\]

\[
\text{Aldo} \\
\text{Aldo} \\
\text{Aldo} \\
\text{Aldo} \\
\]

\[
\text{H}_2\text{O} + \text{CO}_2 \\
\text{H}_2\text{CO}_3 \\
\text{HCO}_3^- + \text{H}^+ \\
\text{Glutamine} \\
\text{Aldo} \\
\text{Aldo} \\
\]

\[
\text{Glutamate} \\
\text{NH}_3 \\
\text{Aldo} \\
\text{Aldo} \\
\]

\[
\text{CA} \\
\text{CA} \\
\text{Aldo} \\
\text{Aldo} \\
\]

\[
\text{Aldo} \\
\text{Aldo} \\
\text{Aldo} \\
\text{Aldo} \\
\]

\[
\text{H}_2\text{O} + \text{CO}_2 \\
\text{H}_2\text{CO}_3 \\
\text{HCO}_3^- + \text{H}^+ \\
\text{Glutamine} \\
\text{Aldo} \\
\text{Aldo} \\
\]

\[
\text{Glutamate} \\
\text{NH}_3 \\
\text{Aldo} \\
\text{Aldo} \\
\]

\[
\text{CA} \\
\text{CA} \\
\text{Aldo} \\
\text{Aldo} \\
\]

\[
\text{Aldo} \\
\text{Aldo} \\
\text{Aldo} \\
\text{Aldo} \\
\]
Type IV RTA

• Hyperkalemia plays a role in the metabolic acidosis by impairing ammonia production & excretion
 – Rate of ammonia production is increased by K depletion,
 – So hyperkalemia decreases rate of ammonia production
Dose of HCO_3^- to Normalize Plasma [HCO_3^-]

- **Type I (distal)**
 - 1-2 mEq/kg/day
- **Type II (proximal)**
 - 10-15 mEq/kg/day
 - Reversal of acidemia is difficult because HCO_3^- is rapidly excreted in the urine
 - 10-15 mEq/kg/day is needed to stay ahead of urinary excretion
Dose of \(\text{HCO}_3 \) to Normalize Plasma [\(\text{HCO}_3 \)]

- Type IV
 - 1-3 mEq/kg/day
 - May require no \(\text{HCO}_3 \) if hyperkalemia is corrected
Compensation of Metabolic Acidosis (all causes)

- Increasing respiratory rate to increase CO₂ elimination
- Decreased cerebral [HCO₃⁻] and pH -> stimulation of respiratory center
- For every 1 mEq/L decrease in [HCO₃⁻] below the average 24 mEq/L, the PaCO₂ decreases by about 1.0 - 1.5 mmHg from the normal value of 40 mmHg.
Na Bicarbonate

- Factors to consider:
 - An increase in arterial blood pH shifts the oxyhemoglobin saturation curve to the left and O2 becomes more tightly bound to hemoglobin (Bohr effect). O2 becomes LESS available - tissue hypoxia
 - Administration of large amounts of bicarb -> severe hypernatremia, fluid overload, hyperosmolality
Na Bicarbonate

• Paradoxical acidosis
 – production of CO$_2$ that freely diffuses into myocardial & cerebral cells
• Decreased iCa with resultant decreased myocardial contractility
Severe Metabolic Acidosis

- Arterial pH < 7.1; HCO$_3^-$ < 5 mEq/L
 - Can result in life-threatening myocardial depression
 - Pt should receive bicarb
How to Determine an Initial Dose of Bicarb

• Initial goal is to raise the pH to approximately 7.2 -> level at which arrhythmias are less likely

• 1st step: Determine $[\text{HCO}_3^-]_{\text{desired}}$

• $[\text{HCO}_3^-]_{\text{desired}} = 24/\text{[H]} \times \text{PaCO}_2$

• $[\text{HCO}_3^-]_{\text{desired}} = 24/63 \times \text{PaCO}_2$

 – note: $\text{pH} = 7.2$ -> $[\text{H}] = 63$
How to Determine an Initial Dose of Bicarb

• 2nd step: calculate the HCO₃ deficit:

\[
\text{HCO}_3 \text{ deficit} = 0.7 \times \text{TBW} \times ([\text{HCO}_3]_{\text{desired}} - [\text{HCO}_3]_{\text{actual}})
\]
Bicarb

• Goals
 – restore hemodynamic stability
 – do not normalize pH
 – arterial pH can be increased over 3-6 hours, but should not be increased to > 7.25 due to changes in serum K & tissue oxygen delivery
Metabolic Alkalosis

- Etiology requires both:
 - generation of metabolic alkalosis
 - loss of H\(^+\) thru GI tract or kidneys
 - maintenance of alkalosis
 - impairment of renal HCO\(_3\) excretion
- Causes:
 - Saline responsive; urine Cl < 10 mEq/L
 - Saline unresponsive; urine Cl > 20 mEq/L
Etiologies of Metabolic Alkalosis

• Chloride depletion results in “chloride-or saline responsive” metabolic alkalosis
 – Chloride may be lost from the gut, kidney or skin
 – Gastric fluid contains 60-140 mM HCL
 – Loss of gastric fluid results in alkalosis because HCO_3^- generated during gastric acid production returns to the circulation
Chloride Depletion

- Gastric losses
 - Vomiting, NG suction, bulimia
 - Use H-2 blockers during NG suction
- Diuretics
- Cystic fibrosis
 - High sweat chloride
 - Sweat losses

- Low chloride intake
 - Chloride-deficient infant formulas
 - Chloride-deficient IV fluids
Saline-Responsive

• Aka “chloride-responsive”
• When adequate chloride is provided, kidney excretes surplus HCO_3^-
• Restores acid-base balance over a few days
Cortical Collecting Tubule

- H_2O dissociates to H^+ & hydroxyl ions
- H^+ secreted into peri-tubular capillary by H-ATPase pump
- Hydroxyl ion combines w/CO$_2$ to from HCO$_3^-$ via CA
- HCO$_3^-$ is secreted via CL- HCO$_3^-$ exchanger
Management

• Saline-responsive: NS or 1/2 NS can lower plasma $[\text{HCO}_3^-]$ in 3 ways:
 – by removing the stimulus to renal Na retention, thereby permitting NaHCO$_3$ excretion in the urine
 – reversing the volume contraction component
 – increasing distal Cl delivery -> promote HCO$_3^-$ secretion in the cortical collecting tubule

• Do not use LR -> converted to HCO$_3^-$; may worsen alkalosis
Saline-Resistant

- aka Saline-Unresponsive
- Rare
- Edematous states
- Mineralocorticoid excess
 - act on distal tubule to increase Na reabsorption and enhance K and H⁺ secretion
 - H⁺ secretion causes generation of new HCO₃ or reclamation of filtered HCO₃
- Severe hypokalemia (increases ammonia production)
- Renal failure
Management

• Acetazolamide
 – increases NaHCO$_3$ excretion
 – decreases HCO$_3$ generation

• Correct hypokalemia
Acetazolamide

- Carbonic anhydrase (CA) inhibitor
- Tubular cell:
 - Inhibits CA
 - Prevents the production of HCO_3^- & H^+ from CO_2 & H_2O
 - Therefore, less H^+ is available for Na/H exchange
 - Less HCO_3^- is available for exit across basolateral membrane
Cortical Collecting Tubule

- Nonreabsorbable anions
- Na with a nonreabsorbable anion (e.g., ticarcillin, piperacillin Na) enhances H and K secretion
- With NaCl, Na will be reabsorbed with little effect on H & K secretion
Nonreabsorbable Anions

• The following antibiotics all contain Na:
 – Amoxicillin 2.6 mEq/g
 – Ampicillin 3.0 mEq/g
 – Azlocillin 2.7 mEq/g
 – Piperacillin 1.9 mEq/g
 – Ticarcillin 5.2 mEq/g

• Q: What is the acid-base disturbance seen with high-doses of these antibiotics? Get your clicker ready
What is the acid-base disturbance seen with high-doses of these antibiotics?

A) Metabolic alkalosis
B) Hypokalemic, metabolic alkalosis
C) Hyperkalemic, metabolic alkalosis
D) No clue
Compensation

• Immediate response:
 – movement of H^+ from cells to ECF in exchange for K and Na

• Respiratory compensation
 – hypoventilation
 – central & peripheral chemoreceptors sense an increase in pH
Cortical Collecting Tubule

- H₂O dissociates to H⁺ & hydroxyl ions
- H⁺ secreted into peri-tubular capillary by H-ATPase pump
- Hydroxy combines w/CO₂ to form HCO₃ via CA
- HCO₃ is secreted via CL- HCO₃ exchanger
Severe or Prolonged Cases of Metabolic Alkalosis

- pH > 7.55 - 7.6
- Acidifying agents:
 - arginine HCl
 - ammonium Cl
 - HCl
Arginine

- Undergoes liver metabolism to produce H^+
- Arginine combines with free ammonia to make urea -> may increase serum urea and K
- Linked to the development of renal failure
Arginine

- Dangerous hyperkalemia can occur from displacement of intracellular K by the arginine cation
- Serum K should always be monitored during and after arginine
Ammonium Cl

• Combines with CO2 and releases HCl following hepatic conversion to urea
 – caution in renal dz; may worsen uremia

• ADRs: CNS toxicity (confusion, irritability, seizures, coma)

• Caution: pts with hepatic dz cannot metabolize this drug -> hyperammonemia -> significant CNS depression
Hydrochloric Acid

• Indicated in pts:
 • with life-threatening alkalosis that has resulted in respiratory failure or tetany
 • in whom ammonium Cl (hepatic dz) or arginine HCl (development of renal failure) is considered dangerous
 • with life-threatening alkalosis that has not responded to NS
Hydrochloric Acid

- Administration is very dangerous
 - severe extravasations has occurred
 - HCL must be given through a catheter placed in the vena cava or a large tributary vein
 - Catheter placement should be confirmed radiographically
- Very large volumes of fluid needed to make these dilute solns
 - ICU pts w/cardiovascular or renal impairment may be unable to tolerate fluids
- To limit potential ADRs, only 50% of the calculated base excess is corrected in 1st 8h
Base Excess

• Used for all chloride-donating agents
• Base excess = Cl mEq needed =
• ([HCO3]observed - 25) x 50% TBW